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SUMMARY 

An adaptive grid generation technique based on modified variational principles coupled with an exponential 
clustering has been developed and tested successfdly for the computation of steady inviscid transonic 
projectile aerodynamics. The isoperimetric problem for adaptive gridding is to extremize a grid smoothness 
functional subject to grid orthogonality and resolution functionals; however, the Lagrange multipliers have 
been assumed to be variables with zero variation and are properly chosen as functions of local grid size 
to enhance locally the grid resolution as well as to  maintain the weight of three grid characteristics the 
same over the entire flow field. With computed pressure gradient as the control function for grid adaptation, 
the resulting Euler equations cannot provide sufficient grid resolution in the boundary layer region of the 
projectile geometry; hence, a clustering technique is needed to redistribute the points along the normal 
grid lines. A grid generation code has been developed and coupled to  an axisymmetric thin-layer 
Navier-Stokes code for self-adaptive grid generation. For the three transonic flow cases considered, 
M ,  = 0.91, 0.96 and 1.10, the distribution of surface pressure calculated from the inviscid option of the 
Navier-Stokes code is indeed in excellent agreement with published measured data. 
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INTRODUCTION 

An accurate prediction of the aerodynamic drag force is essential to a better design of aerodynamic 
devices and flight vehicles. Recently a thin-layer Navier-Stokes code has been developed for high 
speed compressible fluid flow problems.' This code can provide acceptably accurate solutions 
for unsteady or steady inviscid and viscous flow problems if a good grid system is provided; for 
the viscous case, one can further specify either a laminar flow or a turbulent flow. The turbulence 
closure model programmed in the code is a two-layer algebraic eddy viscosity model.* The 
Navier-Stokes code has also been simplified for axisymmetric flows to improve the computational 
effecti~eness.~ 

The application of the thin-layer Navier-Stokes code to transonic projectile aerodynamic 
problems has been investigated by the US. Army Ballistic Research Laboratory. The grid 
network used in the computation is an axisymmetric grid system formed by a sequence of planar 
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grids around the axis of a projectile. The planar grid is obtained from a grid generation code 
named GRIDGEN.4 This code can provide either an elliptic or a hyperbolic grid, which is then 
modified with an exponential clustering along the grid lines normal to the streamwise direction 
to give sufficient grid resolution for the viscous region. Hence, a good adaptive grid can be 
obtained for transonic flows past a projectile with sting at zero angle of attack if the boundary 
grid points are properly chosen. For a secant-ogive-cylinder-boat-tail (SOCBT) projectile with 
sting (i.e. no base flow) at zero angle of attack and Mach number M ,  = 0.91,0.94,0.96, 0.98 and 
1 .lo, the computed surface pressure coefficient C, over the secant-ogive portion and the boat-tail 
portion of the projectile agrees rather well with the measured data; however, the agreement on 
the cylinder portion between the shocks, which may be acceptable, is not very satisfactory for 
some cases c o n ~ i d e r e d . ~ ? ~  As reported in Reference 7 a good adaptive planar grid for accurate 
solutions can be obtained from GRTDGEN only after considerable experimentation with 
boundary grid positioning. For the projectile model at 2" angle of attack and M ,  = 0.91 the C, 
distribution computed on a CRAY 1 S computer agrees qualitatively with the measured data, 
but quantitatively the agreement over the cylinder and boat-tail portions is not satisfactory at 
all.' It is believed that the main cause for the unsatisfactory results can be taken to be the use 
of a grid system which is not properly adaptive to the solution. 

A good grid system for fluid dynamics computations can be justified from the smoothness of 
grids, the orthogonality of grids and the grid resolution adaptive to the solution in the physical 
space. It had been reported that rapid changes of the grid size and highly skewed grids can 
result in undesirable errors.* It is also well known in approximation that the choice of high grid 
resolution in regions where the solution gradient is very large is essential to the accuracy of the 
numerical result. In fact an improper grid resolution in high gradient regions can be detrimental 
to the solution accuracy as well as to the convergence process of a solution algorithm. There 
have been a number of adaptive grid generation methods proposed and reported in symposia, 
workshops, and conferences. The method based on a constrained variational principle, proposed 
by Brackbillg at a symposium, is rather general and seems to be a very promising approach for 
complex fluid flow problems in which shock waves, flame fronts and viscous layers may cause 
extremely thin high-gradient regions of unknown location and orientation, since the governing 
differential equations for an adaptive grid system are derived from minimizing a general 
variational functional which consists of functionals for measuring the smoothness of grids, the 
orthogonality of grids and the grid resolution adaptive to a chosen control function. In fact, 
Saltzman has investigated an application of the adaptive grid generation technique to a 
two-dimensional inviscid supersonic flow past a step in a wind tunnel." In his study, the adaptive 
gridding in the domain was controlled by the computed pressure gradient whereas the boundary 
grids were determine by extrapolation from internal grids out normally to the straight boundary. 
The unsteady solutions computed for the formation and propagation of shock waves were 
striking; they showed that the adaptive mesh generator moves the computational grid with 
shock fronts and consequently enhances significantly the desirable resolution of the finite- 
difference scheme for the accuracy. 

The objective of this study is to explore further the application of variational principles for 
generating a good adaptive grid to the computation of transonic projectile aerodynamics. 
Numerical experiments have been carried out to assess the implication and difficulty of the grid 
generation method and, consequently, an adaptive grid generation technique mainly based on 
constrained variational principles has been developed and coupled to a thin-layer Navier-Stokes 
code for SOCBT projectile aerodynamics computations. 
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VARIATIONAL PRINCIPLES FOR GRID GENERATION 

With a boundary conforming transformation an irregular two-dimensional domain R in the 
physical space, xy-plane, can be mapped into a rectangular domain R’ in the computational 
space, tq-plane; consequently, a square grid network in the computational space can be 
constructed for solving boundary value problems. The 5 and q co-ordinates then become the 
curvilinear coordinates for R in the physical space and constant t-lines and q-lines form a grid 
system in R. It is known that the co-ordinate transformation yields the metrics 

in which J is the Jacobian of the transformation, given by 

J = XyY, - X,Yy. (2) 
It one chooses A t  = Aq = 1.0 in the computational space, then the Jacobian J represents the 
grid size in the physical space. 

The smoothness of a grid network in the physical space can be measured by the integral 

An extremization of this integral with prescribed boundary conditions will result in the Laplace 
equation; hence, a unique solution exists for the grid. Moreover, the orthogonality of grids can 
be measured by the integral’ 

I ,  = (Vt-Vq)’J3 dx dy, 

and the grid resolution adaptive to a control function w(x, y) can be represented by 

I ,  = w J  dx dy. 

(4) 

(5) 

We note that the term J 3  in equation (4) emphasizes the orthogonality for large grids, and the 
choice of the cubic power is for the simplification of the resulting governing equations. Therefore, 
a good grid in the physical space can be measured by the smoothness functional subject to the 
subsidiary conditions, the orthogonality functional and the grid resolution functional; con- 
sequently, an isoperimetric problem for the grid generation is to minimize the functional 

(6) I = I ,  + & I o  + &,z,, 
in which Lo and 5 are Lagrange multipliers.” 

The introduction of undetermined Lagrange multipliers requires prescribed values for the 
subsidiary conditions, equations (4) and (5). Since a proper choice of these values for a good 
grid system is very difficult to make, if not impossible, it is more effective in practice to select 
values for the Lagrange multipliers. Let L, and L, be the characteristic lengths in the physical 
domain and the computational (q-plane, respectively. Also, denote by W a reference value for 
the control function w(x, y) in equation (5). We then observe that the integrands of the functionals 
I , ,  I ,  and I ,  have the dimensions of (LJL,)’, (L,/L,)’ and W(L,/L,)’, respectively. Therefore, 
if the Lagrange multipliers are defined as 
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then each term on the right hand side of equation (6) has the same order of magnitude, provided 
that 2, and A, are of O(1). The relative importances of the three functionals for grid generation 
can be identified from the values chosen for A. and A". 

For adaptive boundary gridding, a one-dimensional variational principle can be employed. 
The functional consisting of a smoothness functional and a grid resolution functional can be 
written as 

- 
I, = I,, + Eu,,IB, = ds + A,, wB(s)sgds. 

J B '  - 1, 
Similarly, the Lagrange multiplier is defined as 

where L,,, L,, and W, are characteristic quantities. 

GOVERNING EQUATIONS FOR GRID GENERATION 

If a physical problem is to be solved in the transformed rectangular domain, the matrics of 
transformation must be provided. This implies that a curvilinear grid in the physical domain 
must be generated; consequently, the dependent variables and the independent variables of the 
functionals have to be interchanged. Accordingly, applying the relation dx dy = J d5 dy and 
the metric relations, equation (l), the general functional for grid generation, equation (6), 
becomes 

(10) 

in which the Jacobian J is defined in equation (2).  Hence the governing equations for grid 
generation are the Euler equations resulting from extremizing the functional I, provided that 
x ( t , y )  and y(5 ,  y) are prescribed on the boundary. They are the following two quasilinear elliptic 
differential equations: 

(1 1) 
b ~ X g <  + b2xrV + b3Xs, + c i ~ g g  + c ~ Y < ,  + c ~ Y , ,  + 3 A w , J 2  = 0. 

Here the coefficients ai, b, and c,  for i = 1,2 and 3 are given by 
7 

a, = a,, + AOaOi + Xvw(x,y)av ir  
bi = bSi + Iobo i  + Xvw(x,y)bv i ,  
ci = c,i + ~ , C O i  + / . , W ( X , Y ) C , i ,  

in which 
a,, = aA, as2 = - 2BA, as3 = yA, 
b,, = - uB, b,, = 2BB, b,3 = - yB, 
c,, = a c ,  c,2 = - 2 p c ,  C , g  = yc, 
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2 
a 0 2  = 2 ( 2 x < x q  + Y < Y q ) ,  u 0 3  = x< 7 

2 
a01 = x , ,  

b0, = X q Y , ,  

a v 1  = y , ,  a, = - 2YyYIp a v 3  = Y y >  

b"1 = - X,Y,, 

C"1 = x ; ,  c v 2  = - 2xsx,, c , 3  = x; .  

b 0 2  = X < Y ,  + X , Y y ,  

c02 = W < X ,  + 2 Y < Y , ) ,  

h"2 = X C Y ,  + X q Y p  

b 0 3  = X y Y s ,  
2 

c 0 2  = Y r  7 
2 

c01 = Y , ,  
2 2 

b,, = - X s Y s ,  

Similarly the governing differential equation for adaptive boundary gridding can be derived from 
equation (8). One finds 

in which s is the distance measured along the boundary. It is mentioned in passing that an improper 
choice of &, Xv and w ( x ,  y )  in equation (10) can change the type of differential equations (1 1). 

NUMERICAL EXPERIMENTS AND RESULTS 

Transonic inviscid flows past a SOCBT projectile with sting at zero angle of attack have been 
considered for the study. This projectile model has a 3-caliber secant-ogive part followed by a 
2-caliber cylinder and 1 -caliber 7-degree boat-tail which is further extended for another 1.77 
calibers to meet a horizontal sting. There are surface pressure measurements available for assessing 
the accuracy of numerical results.' The physical domain of the problem considered contains 
about 4 projectile-lengths from the nose, 5 projectile-lengths from the cylinder and 3 projectile- 
lengths downstream of the base. The transonic aerodynamics problem is solved by an 
axisymmetric thin-layer Navier-Stokes code obtained from the U.S. Army Ballistic Research 
Laboratory. In this code the transformed thin-layer Navier-Stokes equations are solved by the 
Beam and Warming scheme in which a second-order implicit dissipation term and a fourth-order 
explicit dissipation term have been added for controlling the numerical stability. The code has 
an option for solving inviscid flow problems and a steady solution results from a converged 
solution of the unsteady problem. It is mentioned in passing that a planar grid must be generated 
and provided to the code for the aerodynamics computation. 

All planar grids generated and used in this study consist of 70 x 35 grid points with 70 points 
along the surface of the projectile model; hence, the range of (5, y) in the computational space is 
from (1,l)  to (70,35). Moreover, resulting from experience with the limited numbers of points used, 
we have fixed the distribution of the number of boundary points along the projectile model as 
follows: 23 points on the ogive, 22 points on the cylinder, 17 points on the boat-tail and 8 points on 
the sting. For grid generation, the governing partial differential equations (1 l) ,  are approximated 
by second-order central difference schemes and the resulting non-linear algebraic equations are 
solved by the Newton-Raphson interactive method supplemented with overrelaxation. The 
boundary conditions for x ( 5 ,  y) and y ( ( ,  q )  at the projectile surface q = 1 and at  the outer boundary 
q = 35 are predetermined by equation ( 1 2 )  for grid resolution; however, the conditions at the side 
boundaries, 5 = 1 and ( = 70, are obtained and updated by extrapolation from inner grids at the 
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-0.4 

end of each iteration. We note that the extrapolation technique for determining boundary grids on 
the projectile surface can be detrimental because of the complex geometry. 

The generation of a good adaptive grid based on the variational principle depends on a proper 
choice of the control function w(x,  y )  in equation ( 5 )  for grid resolution as well as suitable choices of 
the Lagrange multipliers To and defined in equation (7), provided that good adaptive boundary 
grids are prescribed. For the transonic flow problems considered, the variation of solutions in the 
domain of interest is dominated by the pressure field and, therefore, we have chosen the control 
function for grid adaptation as 

W ( X , Y )  = lP,l + IPYl9 (1  3) 
in which P ,  and P, are components of the computed pressure gradient. A converged solution of the 
projectile problem at a Mach number of 0.96 has been used to investigate the relative importance of 
the multipliers on the grid resolution functional I,; with To = 1 and x, varying from 0 to 10, the 
variance of I,. over the mean of I ,  changes from 9.0 to 7.8. This implies that different choices of the 
multipliers will have rather minimal effects on grid resolution adaptive to the control function. 
Hence, we have assumed for the following study that 

A. = A,, = A. (14) 

Note that A. and Av are related to the corresponding multipliers by equation (7). The choice of j. = 1 
implies that the grid generated has the same weight on the three grid characteristics, whereas the 
grid orthogonality and grid resolution can be enhanced over the smoothness by increasing the 
value of A. 

For assessing the application of the adaptive grid generation technique, we have considered the 
projectile aerodynamics problem at M ,  = 0.91. The characteristic lengths L, and L, in 
equation (7) are the global ones similar to those used by Saltzman, and A is set to 4.0. The initial 
grid provided to the thin-layer Navier-Stokes code is a smooth one. The computed surface 
pressure coefficient C, after 50 time steps, i.e. NT = 50, is shown in Figure l(a); measured data 

- ff 0 

- 0 

Figure I .  Surface pressure coefficient computed and adaptive grid generated at N T  = 50 for M ,  = 0.91. (a)-: computed 
transient C,; 0: measured steady state C,. (b) Grid generated near the projectile model surface 
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for the steady solution are also plotted for reference. A new grid adaptive to the computed 
pressure gradient at NT = 50 is then generated for continuation of the solution code. Figure l(b) 
shows the grid network near the projectile. The thin-layer code is restarted for another 150 steps, 
i.e. NT = 200, and the computed pressure coefficient is shown in Figure 2(a). Apparently, the 
solution is not converging correctly, which can be attributed to the poor grid used in the 
computation. A new grid adaptive to the computed pressure gradient at NT, = 200 is again 
generated for the restart of the solution process. As shown in Figure 3, the result obtained at 
NT = 350 does not seem to be properly converging either, even though the grid used looks 

1 -0.4 B 0 

0 - -__  
I X/D 

0 1 2 3 4 5 6 

(a )  

Figure 2. Surface pressurecoefficient computedandadaptivegridgeneratedat NT = 200for M, = 0.91 .(a)-: computed 
transient C,;  0: measured steady state C,. (b) Grid generated near the projectile model surface 
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X/D 

0 1 2 3 4 5 6 

(a) 

Figure 3. Surface pressurecoefficient computed andadaptivegrid generatedat NT = 350forM, = 0.91.(a)-: computed 
transient C,; 0: measured steady state C,.  (b) Grid generated near the projectile model surface 
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better than the one used previously; moreover, we note that the updated adaptive grid at 
NT = 350 is very similar to that at NT = 200. The continuation of the solution algorithm with 
the updated grid has failed within the next 150 steps. 

A close examination of the planar grids generated clearly indicates that the grid characteristics 
right next to the projectile are rather poor; in particular, the grid resolution is not sufficient. This 
implies that the effect of boundary geometry on a good grid generation has to be investigated and 
considered in the control function. Tn this study, however, the difficulty is overcome by applying an 
exponential clustering4 along q-lines of the adaptive grid generated with the smallest spacing equal 
to 0.01 at the projectile. An adaptive grid with clustering generated at NT = 350 is shown in 
Figure 4(a). With this new grid the thin-layer code provides a converging solution at NT = 500, as 
evidenced from the result shown in Figure 4(b). The process has been repeated and the distribution 
of C ,  computed at NT = 650 indeed shows better agreement with the measured data. 

The adaptive gridding with exponential clustering is next tested on the projectile problem at 
M, = 0.96. The first adaptive grid is again generated at NT = 50, but subsequent new grids are 
generated after every 200 time steps. The solution process proceeded smoothly without any 
difficulty and provided an acceptably accurate pressure distribution at NT = 850. For assessing the 
grid generation technique, however, the integration process was carried out further to NT = 1650. 
Figure 5 shows the agreement between the computed C, at NT = 1650 and measured data; 
however, appreciable differences observed on the cylinder and its junction with the boat-tail still 
call for better grid resolutions in those regions. 

The choice of the control function w(.x,y) to obtain a better adaptive grid is not a trivial one; it 
requires extensive parametric study and numerical experimentation. For instance, we have used a 
stronger control function equal to the square of the pressure gradient and experienced overflow 

0 I.,. 3 5 6 

( b) 

Figure 4. Adaptive grid with clustering and computed surface pressure coefficient for M, = 0.91: (a) adaptive grid with 
clustering generated at N T  = 350: (b) C, distribution computed at NT = 500 
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-0.4 

X/D 
0 1 2 3 4 5 6 

Figure 5. Converged C ,  distribution computed at NT = 1650 with self-adaptive gridding for M ,  = 0.96. 

in the process of grid generation. However, the expression for the general functional, equation (6), 
shows that the grid resolution can be enhanced by choosing a larger value for the multiplier I,, that 
is a large ,Iv defined in equation (7). Unfortunately, the use of an extremely large ,Iv can be 
detrimental to the grid generation also. Moreover, a good adaptive grid should have not only good 
adaptive grid resolutions but also good orthogonality and smoothness characteristics. Therefore, 
the parameter ,Iv = lo = A has to be of the order of magnitude one, or ten at most. For the 
projectile problem considered, the use of a large 2 and global characteristic lengths for the 
multipliers has not resulted in a better adaptive grid. We observe that the grid resolution 
functional I ,  of equation (5) can be considered as a limiting case of the general functional; 
consequently, the variational principle of I ,  will give a grid best adaptive to the chosen control 
function w ( x ,  y). Apparently, the control function used in this study, equation ( 1  3) does not 
provide sufficient grid resolutions for the transonic flow problems. 

The variational principle of the general functional I ,  equation (6), indicates that the effect of the 
grid resolution functional can be enhanced locally if a variable Lagrange multiplier X,, is used. 
Departing from the classical variational principle by assuming the variation of the Lagrange 
multipliers To and Z, to be zero, the variation of I equal to zero will result in exactly the same Euler 
equations (1 I ) ,  for grid generation. Now the variable To and 5 defined in equation (7) must be 
selected. In order to realize the relative weight of each term in equation (6) we have fixed the 
parameters Lo and 2, and assumed the relation (14) in grid generation; accordingly, the reference 
quantities L,, L, and W are considered to be variables. In the following study we have chosen the 
local grid spacings as well as local values of the control function for the referenced quantities; hence, 
L, of the computational space is equal to one. Equation (7) indicates that grid resolutions will be 
further enhanced locally in the region of small grids (i.e. small L,), even though the weight of the 
grid resolution term in equation (6) remains the same. In the process of grid generation, the non- 
linear governing equations (1 I), are solved by an iterative method; hence, the local reference length 
L, is updated at the end of each iteration. Similarly, equation (12) for adaptive boundary gridding 
is solved with L,, and W, defined in equation (9), taken as the local quantities. 

The adaptive grid generation technique based on the modified variational principles and a 
clustering strategy is first investigated on the projectile problem at M ,  = 1.10. An adaptive grid 
generation code has been developed and coupled to the thin-layer Navier-Stokes code with a 
strategy of adaptive gridding fixed as follows: the first adaptive grid is generated at NT = 50 
with j. = 0.5 and subsequently a new grid is generated and used at 150 time steps interval with 
2 = 1.0,5.0,7.5 and 10.0 at NT = 650 for enhancing the weight of the grid resolution term as the 
pressure field is being developed. Figures 6-9 show the sequence of results computed to NT = 500. 
We observe that the solution algorithm is converging very smoothly and highly accurate results 
have been obtained at NT = 500; moreover, the adaptive grids generated exhibit clearly the 
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Figure 6 .  Surface pressure coefficient and adaptive grid at NT = 50 for M ,  = 1.10. (a) -: computed transient C,; 
0: measured steady state C,. (b) Adaptive grid based on variable In and rv; I = 0 5  

(b) 

Figure 7. Surface pressure coeficient and adaptive grid at NT = 200 for M ,  = 1.10. (a) -: Computed transient c,; 
0: measured steady state C,. (b) Adaptive grid based on variable &, and V,; i. = 1.0 
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517 
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(b) 
Figure 8. Surface pressure coefficient and adaptive grid at NT = 350 for M, = 1.10. (a) ~ : computed transient C,;  

0: measured steady state C,. (b) Adaptive grid based on variable To and 5; i = 5.0 

4.0 k 

(b) 
Figure 9. Converged surface pressure coefficient and adapiive grid at NT = 500 for M ,  = 1.10. (a) -: computed 

transient C,; 0: measured steady state C, .  (b) Adaptive grid based on variable To and 5; X= 7.5 
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Figure 10. Converged C,-distribution based on self-adaptive gridding; 0: measured data. (a) C ,  distribution 
computed at NT = 650. (b) C ,  distribution computed at N T  = 800. (c) C ,  distribution computed at NT = 500 

development of the pressure field and shock waves. Exactly the same solution process has been 
applied without any difficulty to the projectile problem at M ,  = 0.91 and 0.96. The surface 
pressure coefficient computed at NT = 650 and 800 for M ,  = 0.91 and 0.96, respectively, and that 
of M ,  = 1.10 are shown in Figure 10 with corresponding measured data plotted for comparison. 

CONCLUDING REMARKS 

An adaptive grid generation technique based on variational principles has been investigated for the 
computation of inviscid transonic projectile aerodynamics. The isoperimetric problem for adaptive 
gridding is to minimize a grid smoothness functional subject to a grid orthogonality functional and 
a grid resolution functional. With the choice of computed pressure gradient as the control function 
for grid resolution, the resulting Euler equations do  indeed provide a grid adaptive to the pressure 
field; however, for the projectile geometry considered, the normal grid resolution obtained in the 
boundary layer region is not sufficient, and consequently is detrimental to the convergence process 
of a solution algorithm for the flow problem. The difficulty is overcome by redistributing the grid 
points along each normal grid line by an exponential clustering technique. Moreover, for providing 
a better grid, the Lagrange multipliers of the isoperimetric problem have been assumed to be 
variables with zero variation and are chosen as functions of local grid size to enhance locally the 
grid resolution as well as to maintain the weight of three grid characteristics the same over the 
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entire flow field. Accordingly, a grid generation code has been developed and coupled to an 
axisymmetric thin-layer Navier-Stokes code for self-adaptive grid generation. 

For the three transonic flow cases considered, the surface pressure calculated from the inviscid 
option of the Navier-Stokes code is indeed in excellent agreement with experimental data. The 
strategy of self-adaptive gridding, at an interval of 150 time steps, employed in the process of 
computation is an art rather than a science. For the steady transonic flow problem of interest and 
the use of a 70 x 35 planar grid, it is not necessary to generate a new grid too frequently; in fact, a 
strategy of self-adaptive gridding at every 100 time steps has been considered for the case 
M, = 0.96, and the accuracy of the computed surface pressure distribution is about the same as 
that shown in Figure 10. It is mentioned in passing that an adaptive gridding based on variational 
principles can be rather expensive for complex unsteady flow problems, since a new grid governed 
by quasilinear elliptic equations must be generated more frequently. 
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